How we are Thinking About Generative AI for Developers and Tech Learning
Packt is a global tech publisher serving developers and tech professionals (TechPros). Over the last 20 years, we have published over 8,000 books and videos, gaining deep insights into the evolving challenges tech professionals face. Recently, the rapid emergence of generative AI (GenAI) technologies like CoPilot, ChatGPT, and Gemini has transformed the tech landscape, affecting everyone from software developers to business strategists.

The rapid emergence of generative AI (GenAI) technologies like CoPilot, ChatGPT, and Gemini has transformed the tech landscape.
The Impact of GenAI on TechPro Work
The rapid pace of advancement in Generative AI makes it difficult to predict, but we believe, on balance, that it is a force for good in software development. A core Packt value that we share with our TechPro users is a belief in and commitment to the power of technology for progress. Our default setting is to get on board with change.
GenAI is already changing the nature of many development jobs, but it will not mean the end of software development. We are fundamentally optimistic about the future for TechPros powered by GenAI. It will mean more, faster, better work.
This is how we at Packt see these changes:
- Increased Software Production
Humanity continuously evolves, adapts, and advances, maintaining a need for more sophisticated software solutions – whether those are built on traditional software platforms or on top of AI models themselves. GenAI is already transforming the economics of supply by making engineers more productive and enabling more engineering tasks. The demand for more, better software will remain, leading to an increase in the number of professionals building, designing, adapting, and managing software.
- Shifts in Software Development
Much of what engineers spend time doing can be quite generic. GenAI is beginning to automate these middle-tier, routine activities, allowing developers to focus on higher-value, more creative tasks.
This shift redistributes work in three dimensions from the center of the development stack. Work moves ‘up the stack’ into architecture, domain expertise, and design, ‘down the stack’ into complex algorithm development, infrastructure, and tooling, and outwards to the edges with specific integrations and implementations.
To meet the increased demand for software, there will be significantly more designers and implementors at those development edges, with increasing business and domain focus and specialization. There will be a continuously hard-to-meet need for deep tech engineers building the tools and infrastructure that enable this automation to operate efficiently at scale and speed. This will be seen at the hardware and firmware level as well as operating systems, cloud platforms, and the models and algorithms that modern software is built upon.
- Increased Domain and Business Specialization
As GenAI moves tasks from generic operations upwards and outwards to more specialized domains, engineers will increasingly make decisions that require greater judgment and domain expertise. This will lead to a greater focus on domain experience and knowledge, and a higher value on business relationships.
GenAI also democratizes the development and management of systems, making these processes accessible to more users and transforming many jobs from direct task execution to overseeing AI agents that perform the work. This evolution could significantly expand the roles involving aspects of software design or delivery.
Impact on Tech Pro Learning
GenAI integrates automation and problem solving, leading to profound change in how TechPros learn and solve problems. We see the core changes as being:
- Shift Toward Just-In-Time (JIT) Continuous Learning
Developers have always preferred to learn by doing—starting work and solving problems on the fly. GenAI makes this the only viable approach. The ROI of upfront Just-In-Case (JIC) learning, where developers research technologies that might be useful in future, declines when co-pilots can accelerate initial builds and troubleshoot during development. GenAI tools can escalate to rapid Just-in-Time [JIT] learning sprints to backfill knowledge gaps as they are discovered.
GenAI tools can help engineers to rapidly understand and work on existing complex and often undocumented code bases, again backfilling knowledge gaps JIT.
- Entry Level Learning Moves to Simulated Environments
The JIT learning-by-doing model also applies to students and juniors, but the study work they do will be “as good as real.” Traditional, linear courseware will be replaced by personalized, hands-on projects in rich simulated environments. These environments provide shorter, contextual learning experiences that effectively bridge the gap between theory and practice, reducing the training load on increasingly busy senior developers.
- Growth in Demand for Real World Experience and Peer Interaction
As development increasingly moves up the stack and routine tasks are automated, there is a growing need for TechPros to understand specific real-world applications of systems and solutions. Highly specific, detailed, and objective case studies with high relevance to a specific problem area and technical solution will become increasingly valuable. Demand for discussion and interaction with experienced fellow professionals to share knowledge and insights will also grow. Such authentic content not only aids learning but also enhances the training of AI models.
- Authoritative and Expert Insight Remains Key
Despite the shift towards more automated and JIT learning approaches, a thorough understanding of core concepts remains crucial. Books will continue to be one of the most powerful and authoritative ways for technology originators to share their foundational knowledge. This will remain the key long-term use-case for tech books.
- Continuing Need for Creator Trust and Authenticity
Gen AI enables the rapid creation of written work. In the tech publishing domain, we estimate that up to around 50% of titles in certain categories on Amazon might already be AI-generated or derived. This AI content meets certain user needs, and this proliferation will continue across store platforms. We believe that human-generated work fulfils a different user need and that there will always be value in authentic creator insight and expertise. We continue to build direct relationships with tech professionals and authors to create and publish this content.
The Future is Uncertain
How this evolves is hard to know. The pace of change both in the technology and in the landscape around it has surfaced issues with reliability, compliance, cost, and memory/reasoning limitations. GenAI technology is moving extremely fast but has serious technical challenges.
GenAI technology is moving extremely fast but has serious technical challenges.
Copyright © 2024 Packt Publishing
Contact us via email for more information.